Class AbstractSQPOptimizer
- java.lang.Object
-
- org.hipparchus.optim.BaseOptimizer<P>
-
- org.hipparchus.optim.BaseMultivariateOptimizer<LagrangeSolution>
-
- org.hipparchus.optim.nonlinear.vector.constrained.ConstraintOptimizer
-
- org.hipparchus.optim.nonlinear.vector.constrained.AbstractSQPOptimizer
-
- Direct Known Subclasses:
SQPOptimizerGM
,SQPOptimizerS
public abstract class AbstractSQPOptimizer extends ConstraintOptimizer
Abstract class for Sequential Quadratic Programming solvers- Since:
- 3.1
-
-
Field Summary
-
Fields inherited from class org.hipparchus.optim.BaseOptimizer
evaluations, iterations
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
AbstractSQPOptimizer()
Simple constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description EqualityConstraint
getEqConstraint()
Getter for equality constraint.InequalityConstraint
getIqConstraint()
Getter for inequality constraint.TwiceDifferentiableFunction
getObj()
Getter for objective function.SQPOption
getSettings()
Getter for settings.protected RealVector
lagrangianGradX(RealVector currentGrad, RealMatrix jacobConstraint, RealVector x, RealVector y)
Compute Lagrangian gradient for variable XLagrangeSolution
optimize(OptimizationData... optData)
Stores data and performs the optimization.protected void
parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that characterize the problem.-
Methods inherited from class org.hipparchus.optim.BaseMultivariateOptimizer
getLowerBound, getStartPoint, getUpperBound
-
Methods inherited from class org.hipparchus.optim.BaseOptimizer
doOptimize, getConvergenceChecker, getEvaluations, getIterations, getMaxEvaluations, getMaxIterations, incrementEvaluationCount, incrementIterationCount, optimize
-
-
-
-
Method Detail
-
getSettings
public SQPOption getSettings()
Getter for settings.- Returns:
- settings
-
getObj
public TwiceDifferentiableFunction getObj()
Getter for objective function.- Returns:
- objective function
-
getEqConstraint
public EqualityConstraint getEqConstraint()
Getter for equality constraint.- Returns:
- equality constraint
-
getIqConstraint
public InequalityConstraint getIqConstraint()
Getter for inequality constraint.- Returns:
- inequality constraint
-
optimize
public LagrangeSolution optimize(OptimizationData... optData)
Description copied from class:ConstraintOptimizer
Stores data and performs the optimization.The list of parameters is open-ended so that sub-classes can extend it with arguments specific to their concrete implementations.
When the method is called multiple times, instance data is overwritten only when actually present in the list of arguments: when not specified, data set in a previous call is retained (and thus is optional in subsequent calls).
Important note: Subclasses must override
BaseOptimizer.parseOptimizationData(OptimizationData[])
if they need to register their own options; but then, they must also callsuper.parseOptimizationData(optData)
within that method.- Overrides:
optimize
in classConstraintOptimizer
- Parameters:
optData
- Optimization data. In addition to those documented inBaseOptimizer
, this method will register the following data:- Returns:
- a point/value pair that satisfies the convergence criteria.
-
parseOptimizationData
protected void parseOptimizationData(OptimizationData... optData)
Description copied from class:BaseMultivariateOptimizer
Scans the list of (required and optional) optimization data that characterize the problem.- Overrides:
parseOptimizationData
in classBaseMultivariateOptimizer<LagrangeSolution>
- Parameters:
optData
- Optimization data. The following data will be looked for:
-
lagrangianGradX
protected RealVector lagrangianGradX(RealVector currentGrad, RealMatrix jacobConstraint, RealVector x, RealVector y)
Compute Lagrangian gradient for variable X- Parameters:
currentGrad
- current gradientjacobConstraint
- Jacobianx
- value of xy
- value of y- Returns:
- Lagrangian
-
-