Class AbstractSQPOptimizer

    • Constructor Detail

      • AbstractSQPOptimizer

        protected AbstractSQPOptimizer()
        Simple constructor.
    • Method Detail

      • getSettings

        public SQPOption getSettings()
        Getter for settings.
        Returns:
        settings
      • getEqConstraint

        public EqualityConstraint getEqConstraint()
        Getter for equality constraint.
        Returns:
        equality constraint
      • getIqConstraint

        public InequalityConstraint getIqConstraint()
        Getter for inequality constraint.
        Returns:
        inequality constraint
      • optimize

        public LagrangeSolution optimize​(OptimizationData... optData)
        Description copied from class: ConstraintOptimizer
        Stores data and performs the optimization.

        The list of parameters is open-ended so that sub-classes can extend it with arguments specific to their concrete implementations.

        When the method is called multiple times, instance data is overwritten only when actually present in the list of arguments: when not specified, data set in a previous call is retained (and thus is optional in subsequent calls).

        Important note: Subclasses must override BaseOptimizer.parseOptimizationData(OptimizationData[]) if they need to register their own options; but then, they must also call super.parseOptimizationData(optData) within that method.

        Overrides:
        optimize in class ConstraintOptimizer
        Parameters:
        optData - Optimization data. In addition to those documented in BaseOptimizer, this method will register the following data:
        Returns:
        a point/value pair that satisfies the convergence criteria.
      • lagrangianGradX

        protected RealVector lagrangianGradX​(RealVector currentGrad,
                                             RealMatrix jacobConstraint,
                                             RealVector x,
                                             RealVector y)
        Compute Lagrangian gradient for variable X
        Parameters:
        currentGrad - current gradient
        jacobConstraint - Jacobian
        x - value of x
        y - value of y
        Returns:
        Lagrangian