Class BesselJ

java.lang.Object
org.hipparchus.special.BesselJ
All Implemented Interfaces:
UnivariateFunction

public class BesselJ extends Object implements UnivariateFunction
This class provides computation methods related to Bessel functions of the first kind. Detailed descriptions of these functions are available in Wikipedia, Abramowitz and Stegun (Ch. 9-11), and DLMF (Ch. 10).

This implementation is based on the rjbesl Fortran routine at Netlib.

From the Fortran code:

This program is based on a program written by David J. Sookne (2) that computes values of the Bessel functions J or I of real argument and integer order. Modifications include the restriction of the computation to the J Bessel function of non-negative real argument, the extension of the computation to arbitrary positive order, and the elimination of most underflow.

References:

  • "A Note on Backward Recurrence Algorithms," Olver, F. W. J., and Sookne, D. J., Math. Comp. 26, 1972, pp 941-947.
  • "Bessel Functions of Real Argument and Integer Order," Sookne, D. J., NBS Jour. of Res. B. 77B, 1973, pp 125-132.
  • Nested Class Summary

    Nested Classes
    Modifier and Type
    Class
    Description
    static class 
    Encapsulates the results returned by rjBesl(double, double, int).
  • Constructor Summary

    Constructors
    Constructor
    Description
    BesselJ(double order)
    Create a new BesselJ with the given order.
  • Method Summary

    Modifier and Type
    Method
    Description
    rjBesl(double x, double alpha, int nb)
    Calculates Bessel functions \(J_{n+alpha}(x)\) for non-negative argument x, and non-negative order n + alpha.
    double
    value(double x)
    Returns the value of the constructed Bessel function of the first kind, for the passed argument.
    static double
    value(double order, double x)
    Returns the first Bessel function, \(J_{order}(x)\).

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • BesselJ

      public BesselJ(double order)
      Create a new BesselJ with the given order.
      Parameters:
      order - order of the function computed when using value(double).
  • Method Details

    • value

      public double value(double x) throws MathIllegalArgumentException, MathIllegalStateException
      Returns the value of the constructed Bessel function of the first kind, for the passed argument.
      Specified by:
      value in interface UnivariateFunction
      Parameters:
      x - Argument
      Returns:
      Value of the Bessel function at x
      Throws:
      MathIllegalArgumentException - if x is too large relative to order
      MathIllegalStateException - if the algorithm fails to converge
    • value

      public static double value(double order, double x) throws MathIllegalArgumentException, MathIllegalStateException
      Returns the first Bessel function, \(J_{order}(x)\).
      Parameters:
      order - Order of the Bessel function
      x - Argument
      Returns:
      Value of the Bessel function of the first kind, \(J_{order}(x)\)
      Throws:
      MathIllegalArgumentException - if x is too large relative to order
      MathIllegalStateException - if the algorithm fails to converge
    • rjBesl

      public static BesselJ.BesselJResult rjBesl(double x, double alpha, int nb)
      Calculates Bessel functions \(J_{n+alpha}(x)\) for non-negative argument x, and non-negative order n + alpha.

      Before using the output vector, the user should check that nVals = nb, i.e., all orders have been calculated to the desired accuracy. See BesselResult class javadoc for details on return values.

      Parameters:
      x - non-negative real argument for which J's are to be calculated
      alpha - fractional part of order for which J's or exponentially scaled J's (\(J\cdot e^{x}\)) are to be calculated. 0 <= alpha < 1.0.
      nb - integer number of functions to be calculated, nb > 0. The first function calculated is of order alpha, and the last is of order nb - 1 + alpha.
      Returns:
      BesselJResult a vector of the functions \(J_{alpha}(x)\) through \(J_{nb-1+alpha}(x)\), or the corresponding exponentially scaled functions and an integer output variable indicating possible errors