Class GeometricDistribution

java.lang.Object
org.hipparchus.distribution.discrete.AbstractIntegerDistribution
org.hipparchus.distribution.discrete.GeometricDistribution
All Implemented Interfaces:
Serializable, IntegerDistribution

public class GeometricDistribution extends AbstractIntegerDistribution
Implementation of the geometric distribution.
See Also:
  • Constructor Details

  • Method Details

    • getProbabilityOfSuccess

      public double getProbabilityOfSuccess()
      Access the probability of success for this distribution.
      Returns:
      the probability of success.
    • probability

      public double probability(int x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X = x). In other words, this method represents the probability mass function (PMF) for the distribution.
      Parameters:
      x - the point at which the PMF is evaluated
      Returns:
      the value of the probability mass function at x
    • logProbability

      public double logProbability(int x)
      For a random variable X whose values are distributed according to this distribution, this method returns log(P(X = x)), where log is the natural logarithm. In other words, this method represents the logarithm of the probability mass function (PMF) for the distribution. Note that due to the floating point precision and under/overflow issues, this method will for some distributions be more precise and faster than computing the logarithm of IntegerDistribution.probability(int).

      The default implementation simply computes the logarithm of probability(x).

      Specified by:
      logProbability in interface IntegerDistribution
      Overrides:
      logProbability in class AbstractIntegerDistribution
      Parameters:
      x - the point at which the PMF is evaluated
      Returns:
      the logarithm of the value of the probability mass function at x
    • cumulativeProbability

      public double cumulativeProbability(int x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x). In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.
      Parameters:
      x - the point at which the CDF is evaluated
      Returns:
      the probability that a random variable with this distribution takes a value less than or equal to x
    • getNumericalMean

      public double getNumericalMean()
      Use this method to get the numerical value of the mean of this distribution. For probability parameter p, the mean is (1 - p) / p.
      Returns:
      the mean or Double.NaN if it is not defined
    • getNumericalVariance

      public double getNumericalVariance()
      Use this method to get the numerical value of the variance of this distribution. For probability parameter p, the variance is (1 - p) / (p * p).
      Returns:
      the variance (possibly Double.POSITIVE_INFINITY or Double.NaN if it is not defined)
    • getSupportLowerBound

      public int getSupportLowerBound()
      Access the lower bound of the support. This method must return the same value as inverseCumulativeProbability(0). In other words, this method must return

      inf {x in Z | P(X <= x) > 0}.

      The lower bound of the support is always 0.
      Returns:
      lower bound of the support (always 0)
    • getSupportUpperBound

      public int getSupportUpperBound()
      Access the upper bound of the support. This method must return the same value as inverseCumulativeProbability(1). In other words, this method must return

      inf {x in R | P(X <= x) = 1}.

      The upper bound of the support is infinite (which we approximate as Integer.MAX_VALUE).
      Returns:
      upper bound of the support (always Integer.MAX_VALUE)
    • isSupportConnected

      public boolean isSupportConnected()
      Use this method to get information about whether the support is connected, i.e. whether all integers between the lower and upper bound of the support are included in the support. The support of this distribution is connected.
      Returns:
      true
    • inverseCumulativeProbability

      public int inverseCumulativeProbability(double p) throws MathIllegalArgumentException
      Computes the quantile function of this distribution. For a random variable X distributed according to this distribution, the returned value is
      • inf{x in Z | P(X<=x) >= p} for 0 < p <= 1,
      • inf{x in Z | P(X<=x) > 0} for p = 0.
      If the result exceeds the range of the data type int, then Integer.MIN_VALUE or Integer.MAX_VALUE is returned. The default implementation returns
      Specified by:
      inverseCumulativeProbability in interface IntegerDistribution
      Overrides:
      inverseCumulativeProbability in class AbstractIntegerDistribution
      Parameters:
      p - the cumulative probability
      Returns:
      the smallest p-quantile of this distribution (largest 0-quantile for p = 0)
      Throws:
      MathIllegalArgumentException - if p < 0 or p > 1