Class LevyDistribution

java.lang.Object
org.hipparchus.distribution.continuous.AbstractRealDistribution
org.hipparchus.distribution.continuous.LevyDistribution
All Implemented Interfaces:
Serializable, RealDistribution

public class LevyDistribution extends AbstractRealDistribution
This class implements the Lévy distribution.
See Also:
  • Constructor Details

    • LevyDistribution

      public LevyDistribution(double mu, double c)
      Build a new instance.
      Parameters:
      mu - location parameter
      c - scale parameter
  • Method Details

    • density

      public double density(double x)
      Returns the probability density function (PDF) of this distribution evaluated at the specified point x. In general, the PDF is the derivative of the CDF. If the derivative does not exist at x, then an appropriate replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior or limit superior of the difference quotient.

      From Wikipedia: The probability density function of the Lévy distribution over the domain is

      \[ f(x; \mu, c) = \sqrt{\frac{c}{2\pi}} \frac{e^{\frac{-c}{2 (x - \mu)}}}{(x - \mu)^\frac{3}{2}} \]

      For this distribution, X, this method returns P(X < x). If x is less than location parameter μ, Double.NaN is returned, as in these cases the distribution is not defined.

      Parameters:
      x - the point at which the PDF is evaluated
      Returns:
      the value of the probability density function at point x
    • logDensity

      public double logDensity(double x)
      Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified point x. In general, the PDF is the derivative of the CDF. If the derivative does not exist at x, then an appropriate replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior or limit superior of the difference quotient. Note that due to the floating point precision and under/overflow issues, this method will for some distributions be more precise and faster than computing the logarithm of RealDistribution.density(double).

      The default implementation simply computes the logarithm of density(x). See documentation of density(double) for computation details.

      Specified by:
      logDensity in interface RealDistribution
      Overrides:
      logDensity in class AbstractRealDistribution
      Parameters:
      x - the point at which the PDF is evaluated
      Returns:
      the logarithm of the value of the probability density function at point x
    • cumulativeProbability

      public double cumulativeProbability(double x)
      For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x). In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.

      From Wikipedia: the cumulative distribution function is

       f(x; u, c) = erfc (√ (c / 2 (x - u )))
       
      Parameters:
      x - the point at which the CDF is evaluated
      Returns:
      the probability that a random variable with this distribution takes a value less than or equal to x
    • inverseCumulativeProbability

      public double inverseCumulativeProbability(double p) throws MathIllegalArgumentException
      Computes the quantile function of this distribution. For a random variable X distributed according to this distribution, the returned value is
      • inf{x in R | P(X<=x) >= p} for 0 < p <= 1,
      • inf{x in R | P(X<=x) > 0} for p = 0.
      The default implementation returns
      Specified by:
      inverseCumulativeProbability in interface RealDistribution
      Overrides:
      inverseCumulativeProbability in class AbstractRealDistribution
      Parameters:
      p - the cumulative probability
      Returns:
      the smallest p-quantile of this distribution (largest 0-quantile for p = 0)
      Throws:
      MathIllegalArgumentException - if p < 0 or p > 1
    • getScale

      public double getScale()
      Get the scale parameter of the distribution.
      Returns:
      scale parameter of the distribution
    • getLocation

      public double getLocation()
      Get the location parameter of the distribution.
      Returns:
      location parameter of the distribution
    • getNumericalMean

      public double getNumericalMean()
      Use this method to get the numerical value of the mean of this distribution.
      Returns:
      the mean or Double.NaN if it is not defined
    • getNumericalVariance

      public double getNumericalVariance()
      Use this method to get the numerical value of the variance of this distribution.
      Returns:
      the variance (possibly Double.POSITIVE_INFINITY as for certain cases in TDistribution) or Double.NaN if it is not defined
    • getSupportLowerBound

      public double getSupportLowerBound()
      Access the lower bound of the support. This method must return the same value as inverseCumulativeProbability(0). In other words, this method must return

      inf {x in R | P(X <= x) > 0}.

      Returns:
      lower bound of the support (might be Double.NEGATIVE_INFINITY)
    • getSupportUpperBound

      public double getSupportUpperBound()
      Access the upper bound of the support. This method must return the same value as inverseCumulativeProbability(1). In other words, this method must return

      inf {x in R | P(X <= x) = 1}.

      Returns:
      upper bound of the support (might be Double.POSITIVE_INFINITY)
    • isSupportConnected

      public boolean isSupportConnected()
      Use this method to get information about whether the support is connected, i.e. whether all values between the lower and upper bound of the support are included in the support.
      Returns:
      whether the support is connected or not