Uses of Class
org.hipparchus.complex.FieldComplex
Package
Description
Complex number type and implementations of complex transcendental
functions.
Implementations of Carlson elliptic integrals.
Implementations of Jacobi elliptic functions.
Implementations of Legendre elliptic integrals.
-
Uses of FieldComplex in org.hipparchus.complex
Modifier and TypeMethodDescriptionFieldComplex.abs()
Return the absolute value of this complex number.FieldComplex.acos()
Compute the inverse cosine of this complex number.FieldComplex.acosh()
Inverse hyperbolic cosine operation.FieldComplex.add
(double addend) Returns aComplex
whose value is(this + addend)
, withaddend
interpreted as a real number.FieldComplex.add
(FieldComplex<T> addend) Returns aComplex
whose value is(this + addend)
.Returns aComplex
whose value is(this + addend)
, withaddend
interpreted as a real number.FieldComplex.asin()
Compute the inverse sine of this complex number.FieldComplex.asinh()
Inverse hyperbolic sine operation.FieldComplex.atan()
Compute the inverse tangent of this complex number.FieldComplex.atan2
(FieldComplex<T> x) Two arguments arc tangent operation.FieldComplex.atanh()
Inverse hyperbolic tangent operation.FieldComplex.cbrt()
Cubic root.FieldComplex.ceil()
Get the smallest whole number larger than instance.FieldComplex.conjugate()
Returns the conjugate of this complex number.FieldComplex.copySign
(double r) Returns the instance with the sign of the argument.FieldComplex.copySign
(FieldComplex<T> z) Returns the instance with the sign of the argument.FieldComplex.cos()
Compute the cosine of this complex number.FieldComplex.cosh()
Compute the hyperbolic cosine of this complex number.protected FieldComplex<T>
FieldComplex.createComplex
(T realPart, T imaginaryPart) Create a complex number given the real and imaginary parts.FieldComplex.divide
(double divisor) Returns aComplex
whose value is(this / divisor)
, withdivisor
interpreted as a real number.FieldComplex.divide
(FieldComplex<T> divisor) Returns aComplex
whose value is(this / divisor)
.Returns aComplex
whose value is(this / divisor)
, withdivisor
interpreted as a real number.FieldComplex.exp()
Compute the exponential function of this complex number.FieldComplex.expm1()
Exponential minus 1.FieldComplex.floor()
Get the largest whole number smaller than instance.static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get the square root of -1.static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "+INF + INFi".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get the square root of -1.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex.getMinusOne
(Field<T> field) Get a complex number representing "-1.0 + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "NaN + NaNi".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "1.0 + 0.0i".FieldComplexField.getOne()
Get the multiplicative identity of the field.FieldComplex.getPi()
Get the Archimedes constant π.static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "π + 0.0i".static <T extends CalculusFieldElement<T>>
FieldComplex<T>Get a complex number representing "0.0 + 0.0i".FieldComplexField.getZero()
Get the additive identity of the field.FieldComplex.hypot
(FieldComplex<T> y) Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<FieldComplex<T>> f, FieldComplex<T> start, FieldComplex<T> end) Integrate a function along a straight path between points.FieldComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<FieldComplex<T>> f, FieldComplex<T> start, FieldComplex<T>... path) Integrate a function along a polyline path between any number of points.FieldComplex.linearCombination
(double[] a, FieldComplex<T>[] b) Compute a linear combination.FieldComplex.linearCombination
(double a1, FieldComplex<T> b1, double a2, FieldComplex<T> b2) Compute a linear combination.FieldComplex.linearCombination
(double a1, FieldComplex<T> b1, double a2, FieldComplex<T> b2, double a3, FieldComplex<T> b3) Compute a linear combination.FieldComplex.linearCombination
(double a1, FieldComplex<T> b1, double a2, FieldComplex<T> b2, double a3, FieldComplex<T> b3, double a4, FieldComplex<T> b4) Compute a linear combination.FieldComplex.linearCombination
(FieldComplex<T>[] a, FieldComplex<T>[] b) Compute a linear combination.FieldComplex.linearCombination
(FieldComplex<T> a1, FieldComplex<T> b1, FieldComplex<T> a2, FieldComplex<T> b2) Compute a linear combination.FieldComplex.linearCombination
(FieldComplex<T> a1, FieldComplex<T> b1, FieldComplex<T> a2, FieldComplex<T> b2, FieldComplex<T> a3, FieldComplex<T> b3) Compute a linear combination.FieldComplex.linearCombination
(FieldComplex<T> a1, FieldComplex<T> b1, FieldComplex<T> a2, FieldComplex<T> b2, FieldComplex<T> a3, FieldComplex<T> b3, FieldComplex<T> a4, FieldComplex<T> b4) Compute a linear combination.FieldComplex.log()
Compute the natural logarithm of this complex number.FieldComplex.log10()
Base 10 logarithm.FieldComplex.log1p()
Shifted natural logarithm.FieldComplex.multiply
(double factor) Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a real number.FieldComplex.multiply
(int factor) Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a integer number.FieldComplex.multiply
(FieldComplex<T> factor) Returns aComplex
whose value isthis * factor
.Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a real number.FieldComplex.multiplyMinusI()
Compute this *- -i.FieldComplex.multiplyPlusI()
Compute this * i.FieldComplex.negate()
Returns aComplex
whose value is(-this)
.FieldComplex.newInstance
(double realPart) Create an instance corresponding to a constant real value.static <T extends CalculusFieldElement<T>>
FieldComplex<T>ComplexUtils.polar2Complex
(T r, T theta) Creates a complex number from the given polar representation.FieldComplex.pow
(double x) Returns of value of this complex number raised to the power ofx
.FieldComplex.pow
(int n) Integer power operation.FieldComplex.pow
(FieldComplex<T> x) Returns of value of this complex number raised to the power ofx
.Returns of value of this complex number raised to the power ofx
.FieldComplex.reciprocal()
Returns the multiplicative inverse ofthis
element.FieldComplex.remainder
(double a) IEEE remainder operator.FieldComplex.remainder
(FieldComplex<T> a) IEEE remainder operator.FieldComplex.rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.FieldComplex.rootN
(int n) Nth root.FieldComplex.scalb
(int n) Multiply the instance by a power of 2.FieldComplex.sign()
Compute the sign of the instance.FieldComplex.sin()
Compute the sine of this complex number.FieldComplex.sinh()
Compute the hyperbolic sine of this complex number.FieldComplex.sqrt()
Compute the square root of this complex number.FieldComplex.sqrt1z()
Compute the square root of1 - this2
for this complex number.FieldComplex.square()
FieldComplex.subtract
(double subtrahend) Returns aComplex
whose value is(this - subtrahend)
.FieldComplex.subtract
(FieldComplex<T> subtrahend) Returns aComplex
whose value is(this - subtrahend)
.Returns aComplex
whose value is(this - subtrahend)
.FieldComplex.tan()
Compute the tangent of this complex number.FieldComplex.tanh()
Compute the hyperbolic tangent of this complex number.FieldComplex.toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPFieldComplex.toRadians()
Convert degrees to radians, with error of less than 0.5 ULPFieldComplex.ulp()
Compute least significant bit (Unit in Last Position) for a number.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex.valueOf
(T realPart) Create a complex number given only the real part.static <T extends CalculusFieldElement<T>>
FieldComplex<T>FieldComplex.valueOf
(T realPart, T imaginaryPart) Create a complex number given the real and imaginary parts.Modifier and TypeMethodDescriptionFieldComplexField.getRuntimeClass()
Returns the runtime class of the FieldElement.FieldComplex.nthRoot
(int n) Computes the n-th roots of this complex number.FieldComplex.sinCos()
Combined Sine and Cosine operation.FieldComplex.sinhCosh()
Combined hyperbolic sine and cosine operation.Modifier and TypeMethodDescriptionFieldComplex.add
(FieldComplex<T> addend) Returns aComplex
whose value is(this + addend)
.FieldComplex.atan2
(FieldComplex<T> x) Two arguments arc tangent operation.FieldComplex.copySign
(FieldComplex<T> z) Returns the instance with the sign of the argument.FieldComplex.divide
(FieldComplex<T> divisor) Returns aComplex
whose value is(this / divisor)
.static <T extends CalculusFieldElement<T>>
booleanFieldComplex.equals
(FieldComplex<T> x, FieldComplex<T> y) Returnstrue
iff the values are equal as defined byequals(x, y, 1)
.static <T extends CalculusFieldElement<T>>
booleanFieldComplex.equals
(FieldComplex<T> x, FieldComplex<T> y, double eps) Returnstrue
if, both for the real part and for the imaginary part, there is no T value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static <T extends CalculusFieldElement<T>>
booleanFieldComplex.equals
(FieldComplex<T> x, FieldComplex<T> y, int maxUlps) Test for the floating-point equality between Complex objects.static <T extends CalculusFieldElement<T>>
booleanFieldComplex.equalsWithRelativeTolerance
(FieldComplex<T> x, FieldComplex<T> y, double eps) Returnstrue
if, both for the real part and for the imaginary part, there is no T value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.FieldComplex.hypot
(FieldComplex<T> y) Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<FieldComplex<T>> f, FieldComplex<T> start, FieldComplex<T> end) Integrate a function along a straight path between points.FieldComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<FieldComplex<T>> f, FieldComplex<T> start, FieldComplex<T>... path) Integrate a function along a polyline path between any number of points.FieldComplex.linearCombination
(double[] a, FieldComplex<T>[] b) Compute a linear combination.FieldComplex.linearCombination
(double a1, FieldComplex<T> b1, double a2, FieldComplex<T> b2) Compute a linear combination.FieldComplex.linearCombination
(double a1, FieldComplex<T> b1, double a2, FieldComplex<T> b2, double a3, FieldComplex<T> b3) Compute a linear combination.FieldComplex.linearCombination
(double a1, FieldComplex<T> b1, double a2, FieldComplex<T> b2, double a3, FieldComplex<T> b3, double a4, FieldComplex<T> b4) Compute a linear combination.FieldComplex.linearCombination
(FieldComplex<T>[] a, FieldComplex<T>[] b) Compute a linear combination.FieldComplex.linearCombination
(FieldComplex<T> a1, FieldComplex<T> b1, FieldComplex<T> a2, FieldComplex<T> b2) Compute a linear combination.FieldComplex.linearCombination
(FieldComplex<T> a1, FieldComplex<T> b1, FieldComplex<T> a2, FieldComplex<T> b2, FieldComplex<T> a3, FieldComplex<T> b3) Compute a linear combination.FieldComplex.linearCombination
(FieldComplex<T> a1, FieldComplex<T> b1, FieldComplex<T> a2, FieldComplex<T> b2, FieldComplex<T> a3, FieldComplex<T> b3, FieldComplex<T> a4, FieldComplex<T> b4) Compute a linear combination.FieldComplex.multiply
(FieldComplex<T> factor) Returns aComplex
whose value isthis * factor
.FieldComplex.pow
(FieldComplex<T> x) Returns of value of this complex number raised to the power ofx
.FieldComplex.remainder
(FieldComplex<T> a) IEEE remainder operator.FieldComplex.subtract
(FieldComplex<T> subtrahend) Returns aComplex
whose value is(this - subtrahend)
.Modifier and TypeMethodDescriptionFieldComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<FieldComplex<T>> f, FieldComplex<T> start, FieldComplex<T> end) Integrate a function along a straight path between points.FieldComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<FieldComplex<T>> f, FieldComplex<T> start, FieldComplex<T>... path) Integrate a function along a polyline path between any number of points. -
Uses of FieldComplex in org.hipparchus.special.elliptic.carlson
Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rC
(FieldComplex<T> x, FieldComplex<T> y) Compute Carlson elliptic integral RC.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rD
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RD.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rF
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RF.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rG
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RG.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rJ
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p) Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rJ
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p, FieldComplex<T> delta) Compute Carlson elliptic integral RJ.Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rC
(FieldComplex<T> x, FieldComplex<T> y) Compute Carlson elliptic integral RC.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rD
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RD.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rF
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RF.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rG
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z) Compute Carlson elliptic integral RG.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rJ
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p) Compute Carlson elliptic integral RJ.static <T extends CalculusFieldElement<T>>
FieldComplex<T>CarlsonEllipticIntegral.rJ
(FieldComplex<T> x, FieldComplex<T> y, FieldComplex<T> z, FieldComplex<T> p, FieldComplex<T> delta) Compute Carlson elliptic integral RJ. -
Uses of FieldComplex in org.hipparchus.special.elliptic.jacobi
Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldJacobiElliptic<FieldComplex<T>>JacobiEllipticBuilder.build
(FieldComplex<T> m) Build an algorithm for computing Jacobi elliptic functions.Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldJacobiElliptic<FieldComplex<T>>JacobiEllipticBuilder.build
(FieldComplex<T> m) Build an algorithm for computing Jacobi elliptic functions. -
Uses of FieldComplex in org.hipparchus.special.elliptic.legendre
Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigD
(FieldComplex<T> m) Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigD
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> m) Get the complete elliptic integral of the second kind E(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigF
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigF
(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigK
(FieldComplex<T> m) Get the complete elliptic integral of the first kind K(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigKPrime
(FieldComplex<T> m) Get the complete elliptic integral of the first kind K'(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> m) Get the complete elliptic integral of the third kind Π(n, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the third kind Π(n, φ, m).Modifier and TypeMethodDescriptionstatic <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigD
(FieldComplex<T> m) Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigD
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> m) Get the complete elliptic integral of the second kind E(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigE
(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the second kind E(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigF
(FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigF
(FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the first kind F(φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigK
(FieldComplex<T> m) Get the complete elliptic integral of the first kind K(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigKPrime
(FieldComplex<T> m) Get the complete elliptic integral of the first kind K'(m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> m) Get the complete elliptic integral of the third kind Π(n, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m) Get the incomplete elliptic integral of the third kind Π(n, φ, m).static <T extends CalculusFieldElement<T>>
FieldComplex<T>LegendreEllipticIntegral.bigPi
(FieldComplex<T> n, FieldComplex<T> phi, FieldComplex<T> m, FieldComplexUnivariateIntegrator<T> integrator, int maxEval) Get the incomplete elliptic integral of the third kind Π(n, φ, m).