Uses of Class
org.hipparchus.complex.Complex
Package
Description
Root finding algorithms, for univariate real functions.
Complex number type and implementations of complex transcendental
functions.
Linear algebra support.
This package provides classes to solve Ordinary Differential Equations problems.
Complex functions plots.
Implementations of Carlson elliptic integrals.
Implementations of Jacobi elliptic functions.
Implementations of Legendre elliptic integrals.
Implementations of transform methods, including Fast Fourier transforms.
-
Uses of Complex in org.hipparchus.analysis.solvers
Modifier and TypeMethodDescriptionComplex[]
LaguerreSolver.solveAllComplex
(double[] coefficients, double initial) Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.Complex[]
LaguerreSolver.solveAllComplex
(double[] coefficients, int maxEval, double initial) Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.LaguerreSolver.solveComplex
(double[] coefficients, double initial) Find a complex root for the polynomial with the given coefficients, starting from the given initial value. -
Uses of Complex in org.hipparchus.complex
Modifier and TypeFieldDescriptionstatic final Complex
Complex.I
The square root of -1.static final Complex
Complex.INF
A complex number representing "+INF + INFi"static final Complex
Complex.MINUS_I
The square root of -1.static final Complex
Complex.MINUS_ONE
A complex number representing "-1.0 + 0.0i".static final Complex
Complex.NaN
A complex number representing "NaN + NaNi".static final Complex
Complex.ONE
A complex number representing "1.0 + 0.0i".static final Complex
Complex.PI
A complex number representing "π + 0.0i".static final Complex
Complex.ZERO
A complex number representing "0.0 + 0.0i".Modifier and TypeMethodDescriptionComplex.abs()
Return the absolute value of this complex number.Complex.acos()
Compute the inverse cosine of this complex number.Complex.acosh()
Inverse hyperbolic cosine operation.Complex.add
(double addend) Returns aComplex
whose value is(this + addend)
, withaddend
interpreted as a real number.Returns aComplex
whose value is(this + addend)
.Complex.asin()
Compute the inverse sine of this complex number.Complex.asinh()
Inverse hyperbolic sine operation.Complex.atan()
Compute the inverse tangent of this complex number.Two arguments arc tangent operation.Complex.atanh()
Inverse hyperbolic tangent operation.Complex.cbrt()
Cubic root.Complex.ceil()
Get the smallest whole number larger than instance.Complex.conjugate()
Returns the conjugate of this complex number.static Complex[]
ComplexUtils.convertToComplex
(double[] real) Convert an array of primitive doubles to an array ofComplex
objects.Complex.copySign
(double r) Returns the instance with the sign of the argument.Returns the instance with the sign of the argument.Complex.cos()
Compute the cosine of this complex number.Complex.cosh()
Compute the hyperbolic cosine of this complex number.protected Complex
Complex.createComplex
(double realPart, double imaginaryPart) Create a complex number given the real and imaginary parts.Complex.divide
(double divisor) Returns aComplex
whose value is(this / divisor)
, withdivisor
interpreted as a real number.Returns aComplex
whose value is(this / divisor)
.Complex.exp()
Compute the exponential function of this complex number.Complex.expm1()
Exponential minus 1.Complex.floor()
Get the largest whole number smaller than instance.ComplexField.getOne()
Get the multiplicative identity of the field.Complex.getPi()
Get the Archimedes constant π.ComplexField.getZero()
Get the additive identity of the field.Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.ComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex end) Integrate a function along a straight path between points.ComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex... path) Integrate a function along a polyline path between any number of points.Complex.linearCombination
(double[] a, Complex[] b) Compute a linear combination.Complex.linearCombination
(double a1, Complex b1, double a2, Complex b2) Compute a linear combination.Complex.linearCombination
(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3) Compute a linear combination.Complex.linearCombination
(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4) Compute a linear combination.Complex.linearCombination
(Complex[] a, Complex[] b) Compute a linear combination.Complex.linearCombination
(Complex a1, Complex b1, Complex a2, Complex b2) Compute a linear combination.Compute a linear combination.Complex.linearCombination
(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4) Compute a linear combination.Complex.log()
Compute the natural logarithm of this complex number.Complex.log10()
Base 10 logarithm.Complex.log1p()
Shifted natural logarithm.Complex.multiply
(double factor) Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a real number.Complex.multiply
(int factor) Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a integer number.Returns aComplex
whose value isthis * factor
.Complex.multiplyMinusI()
Compute this *- -i.Complex.multiplyPlusI()
Compute this * i.Complex.negate()
Returns aComplex
whose value is(-this)
.Complex.newInstance
(double realPart) Create an instance corresponding to a constant real value.Parses a string to produce aComplex
object.ComplexFormat.parse
(String source, ParsePosition pos) Parses a string to produce aComplex
object.static Complex
ComplexUtils.polar2Complex
(double r, double theta) Creates a complex number from the given polar representation.Complex.pow
(double x) Returns of value of this complex number raised to the power ofx
.Complex.pow
(int n) Integer power operation.Returns of value of this complex number raised to the power ofx
.Complex.reciprocal()
Returns the multiplicative inverse ofthis
element.Complex.remainder
(double a) IEEE remainder operator.IEEE remainder operator.Complex.rint()
Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.Complex.rootN
(int n) Nth root.Complex.scalb
(int n) Multiply the instance by a power of 2.Complex.sign()
Compute the sign of the instance.Complex.sin()
Compute the sine of this complex number.Complex.sinh()
Compute the hyperbolic sine of this complex number.Complex.sqrt()
Compute the square root of this complex number.Complex.sqrt1z()
Compute the square root of1 - this2
for this complex number.Complex.square()
Compute this × this.Complex.subtract
(double subtrahend) Returns aComplex
whose value is(this - subtrahend)
.Returns aComplex
whose value is(this - subtrahend)
.Complex.tan()
Compute the tangent of this complex number.Complex.tanh()
Compute the hyperbolic tangent of this complex number.Complex.toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPComplex.toRadians()
Convert degrees to radians, with error of less than 0.5 ULPComplex.ulp()
Compute least significant bit (Unit in Last Position) for a number.static Complex
Complex.valueOf
(double realPart) Create a complex number given only the real part.static Complex
Complex.valueOf
(double realPart, double imaginaryPart) Create a complex number given the real and imaginary parts.Modifier and TypeMethodDescriptionComplexField.getRuntimeClass()
Returns the runtime class of the FieldElement.Complex.nthRoot
(int n) Computes the n-th roots of this complex number.Complex.sinCos()
Combined Sine and Cosine operation.Complex.sinhCosh()
Combined hyperbolic sine and cosine operation.Modifier and TypeMethodDescriptionReturns aComplex
whose value is(this + addend)
.Two arguments arc tangent operation.int
Compare two complex numbers, using real ordering as the primary sort order and imaginary ordering as the secondary sort order.int
Returns the instance with the sign of the argument.Returns aComplex
whose value is(this / divisor)
.static boolean
Returnstrue
iff the values are equal as defined byequals(x, y, 1)
.static boolean
Returnstrue
if, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static boolean
Test for the floating-point equality between Complex objects.static boolean
Complex.equalsWithRelativeTolerance
(Complex x, Complex y, double eps) Returnstrue
if, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.This method callsComplexFormat.format(Object,StringBuffer,FieldPosition)
.ComplexFormat.format
(Complex complex, StringBuffer toAppendTo, FieldPosition pos) Formats aComplex
object to produce a string.Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.ComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex end) Integrate a function along a straight path between points.ComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex... path) Integrate a function along a polyline path between any number of points.Complex.linearCombination
(double[] a, Complex[] b) Compute a linear combination.Complex.linearCombination
(double a1, Complex b1, double a2, Complex b2) Compute a linear combination.Complex.linearCombination
(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3) Compute a linear combination.Complex.linearCombination
(double a1, Complex b1, double a2, Complex b2, double a3, Complex b3, double a4, Complex b4) Compute a linear combination.Complex.linearCombination
(Complex[] a, Complex[] b) Compute a linear combination.Complex.linearCombination
(Complex a1, Complex b1, Complex a2, Complex b2) Compute a linear combination.Compute a linear combination.Complex.linearCombination
(Complex a1, Complex b1, Complex a2, Complex b2, Complex a3, Complex b3, Complex a4, Complex b4) Compute a linear combination.Returns aComplex
whose value isthis * factor
.Returns of value of this complex number raised to the power ofx
.IEEE remainder operator.Returns aComplex
whose value is(this - subtrahend)
.Modifier and TypeMethodDescriptionComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex end) Integrate a function along a straight path between points.ComplexUnivariateIntegrator.integrate
(int maxEval, CalculusFieldUnivariateFunction<Complex> f, Complex start, Complex... path) Integrate a function along a polyline path between any number of points. -
Uses of Complex in org.hipparchus.linear
Modifier and TypeMethodDescriptionEigenDecompositionNonSymmetric.getDeterminant()
Computes the determinant of the matrix.EigenDecompositionNonSymmetric.getEigenvalue
(int i) Returns the ith eigenvalue of the original matrix.Complex[]
ComplexEigenDecomposition.getEigenvalues()
Getter of the eigen values.Complex[]
EigenDecompositionNonSymmetric.getEigenvalues()
Gets a copy of the eigenvalues of the original matrix.Modifier and TypeMethodDescriptionComplexEigenDecomposition.getD()
Getter D.ComplexEigenDecomposition.getEigenvector
(int i) Getter of the eigen vectors.EigenDecompositionNonSymmetric.getEigenvector
(int i) Gets a copy of the ith eigenvector of the original matrix.ComplexEigenDecomposition.getV()
Getter V.ComplexEigenDecomposition.getVT()
Getter VT.OrderedComplexEigenDecomposition.getVT()
Getter VT.Modifier and TypeMethodDescriptionprotected void
ComplexEigenDecomposition.findEigenVectors
(FieldMatrix<Complex> matrix) Compute the eigen vectors using the inverse power method.ModifierConstructorDescriptionOrderedComplexEigenDecomposition
(RealMatrix matrix, double eigenVectorsEquality, double epsilon, double epsilonAVVDCheck, Comparator<Complex> eigenValuesComparator) Constructor for decomposition. -
Uses of Complex in org.hipparchus.ode
Modifier and TypeMethodDescriptionComplex[]
ComplexOrdinaryDifferentialEquation.computeDerivatives
(double t, Complex[] y) Get the current time derivative of the state vector.Complex[]
ComplexSecondaryODE.computeDerivatives
(double t, Complex[] primary, Complex[] primaryDot, Complex[] secondary) Compute the derivatives related to the secondary state parameters.protected Complex[][]
Copy a two-dimensions array.Complex[]
ComplexODEStateAndDerivative.getCompleteDerivative()
Get complete derivative at time.Complex[]
ComplexODEState.getCompleteState()
Get complete state at time.Complex[]
ComplexODEStateAndDerivative.getPrimaryDerivative()
Get derivative of the primary state at time.Complex[]
ComplexODEState.getPrimaryState()
Get primary state at time.Complex[]
ComplexODEStateAndDerivative.getSecondaryDerivative
(int index) Get derivative of the secondary state at time.Complex[]
ComplexODEState.getSecondaryState
(int index) Get secondary state at time.Modifier and TypeMethodDescriptionComplex[]
ComplexOrdinaryDifferentialEquation.computeDerivatives
(double t, Complex[] y) Get the current time derivative of the state vector.Complex[]
ComplexSecondaryODE.computeDerivatives
(double t, Complex[] primary, Complex[] primaryDot, Complex[] secondary) Compute the derivatives related to the secondary state parameters.protected Complex[][]
Copy a two-dimensions array.default void
Initialize equations at the start of an ODE integration.default void
Initialize equations at the start of an ODE integration.ModifierConstructorDescriptionComplexODEState
(double time, Complex[] primaryState) Simple constructor.ComplexODEState
(double time, Complex[] primaryState, Complex[][] secondaryState) Simple constructor.ComplexODEStateAndDerivative
(double time, Complex[] primaryState, Complex[] primaryDerivative) Simple constructor.ComplexODEStateAndDerivative
(double time, Complex[] primaryState, Complex[] primaryDerivative, Complex[][] secondaryState, Complex[][] secondaryDerivative) Simple constructor. -
Uses of Complex in org.hipparchus.samples.complex
Modifier and TypeMethodDescriptiondouble
Continuous hue.double
DomainColoring.saturation
(Complex z) Get saturation for a complex value.double
Get value for a complex value.protected abstract double
Get value for a complex value.double
Get value for a complex value.double
Get value for a complex value. -
Uses of Complex in org.hipparchus.special.elliptic.carlson
Modifier and TypeMethodDescriptionstatic Complex
Compute Carlson elliptic integral RC.static Complex
Compute Carlson elliptic integral RD.static Complex
Compute Carlson elliptic integral RF.static Complex
Compute Carlson elliptic integral RG.static Complex
Compute Carlson elliptic integral RJ.static Complex
Compute Carlson elliptic integral RJ.Modifier and TypeMethodDescriptionstatic Complex
Compute Carlson elliptic integral RC.static Complex
Compute Carlson elliptic integral RD.static Complex
Compute Carlson elliptic integral RF.static Complex
Compute Carlson elliptic integral RG.static Complex
Compute Carlson elliptic integral RJ.static Complex
Compute Carlson elliptic integral RJ. -
Uses of Complex in org.hipparchus.special.elliptic.jacobi
Modifier and TypeMethodDescriptionTheta.theta1()
Get the value of the θ₁(z|τ) function.Theta.theta2()
Get the value of the θ₂(z|τ) function.Theta.theta3()
Get the value of the θ₃(z|τ) function.Theta.theta4()
Get the value of the θ₄(z|τ) function.Modifier and TypeMethodDescriptionstatic FieldJacobiElliptic<Complex>
Build an algorithm for computing Jacobi elliptic functions. -
Uses of Complex in org.hipparchus.special.elliptic.legendre
Modifier and TypeMethodDescriptionstatic Complex
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static Complex
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static Complex
Get the complete elliptic integral of the second kind E(m).static Complex
Get the incomplete elliptic integral of the second kind E(φ, m).static Complex
LegendreEllipticIntegral.bigE
(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval) Get the incomplete elliptic integral of the second kind E(φ, m) using numerical integration.static Complex
Get the incomplete elliptic integral of the first kind F(φ, m).static Complex
LegendreEllipticIntegral.bigF
(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval) Get the incomplete elliptic integral of the first kind F(φ, m) using numerical integration.static Complex
Get the complete elliptic integral of the first kind K(m).static Complex
Get the complete elliptic integral of the first kind K'(m).static Complex
Get the complete elliptic integral of the third kind Π(n, m).static Complex
Get the incomplete elliptic integral of the third kind Π(n, φ, m).static Complex
LegendreEllipticIntegral.bigPi
(Complex n, Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval) Get the incomplete elliptic integral of the third kind Π(n, φ, m) using numerical integration.Modifier and TypeMethodDescriptionstatic Complex
Get the complete elliptic integral D(m) = [K(m) - E(m)]/m.static Complex
Get the incomplete elliptic integral D(φ, m) = [F(φ, m) - E(φ, m)]/m.static Complex
Get the complete elliptic integral of the second kind E(m).static Complex
Get the incomplete elliptic integral of the second kind E(φ, m).static Complex
LegendreEllipticIntegral.bigE
(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval) Get the incomplete elliptic integral of the second kind E(φ, m) using numerical integration.static Complex
Get the incomplete elliptic integral of the first kind F(φ, m).static Complex
LegendreEllipticIntegral.bigF
(Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval) Get the incomplete elliptic integral of the first kind F(φ, m) using numerical integration.static Complex
Get the complete elliptic integral of the first kind K(m).static Complex
Get the complete elliptic integral of the first kind K'(m).static Complex
Get the complete elliptic integral of the third kind Π(n, m).static Complex
Get the incomplete elliptic integral of the third kind Π(n, φ, m).static Complex
LegendreEllipticIntegral.bigPi
(Complex n, Complex phi, Complex m, ComplexUnivariateIntegrator integrator, int maxEval) Get the incomplete elliptic integral of the third kind Π(n, φ, m) using numerical integration. -
Uses of Complex in org.hipparchus.transform
Modifier and TypeMethodDescriptionstatic Complex[]
TransformUtils.createComplexArray
(double[][] dataRI) Builds a new array ofComplex
from the specified two dimensional array of real and imaginary parts.static Complex[]
TransformUtils.scaleArray
(Complex[] f, double d) Multiply every component in the given complex array by the given real number.Complex[]
FastFourierTransformer.transform
(double[] f, TransformType type) Returns the (forward, inverse) transform of the specified real data set.Complex[]
FastFourierTransformer.transform
(UnivariateFunction f, double min, double max, int n, TransformType type) Returns the (forward, inverse) transform of the specified real function, sampled on the specified interval.Complex[]
FastFourierTransformer.transform
(Complex[] f, TransformType type) Returns the (forward, inverse) transform of the specified complex data set.Modifier and TypeMethodDescriptionstatic double[][]
TransformUtils.createRealImaginaryArray
(Complex[] dataC) Builds a new two dimensional array ofdouble
filled with the real and imaginary parts of the specifiedComplex
numbers.static Complex[]
TransformUtils.scaleArray
(Complex[] f, double d) Multiply every component in the given complex array by the given real number.Complex[]
FastFourierTransformer.transform
(Complex[] f, TransformType type) Returns the (forward, inverse) transform of the specified complex data set.