Uses of Class
org.hipparchus.analysis.differentiation.FieldDerivativeStructure
Package
Description
This package holds the main interfaces and basic building block classes
dealing with differentiation.
-
Uses of FieldDerivativeStructure in org.hipparchus.analysis.differentiation
Modifier and TypeMethodDescriptionFieldDerivativeStructure.abs()
absolute value.FieldDerivativeStructure.acos()
Arc cosine operation.FieldDerivativeStructure.acosh()
Inverse hyperbolic cosine operation.FieldDerivativeStructure.add
(double a) '+' operator.FieldDerivativeStructure.add
(FieldDerivativeStructure<T> a) Compute this + a.FieldDerivativeStructure.asin()
Arc sine operation.FieldDerivativeStructure.asinh()
Inverse hyperbolic sine operation.FieldDerivativeStructure.atan()
Arc tangent operation.FieldDerivativeStructure.atan2
(FieldDerivativeStructure<T> x) Two arguments arc tangent operation.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.atan2
(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) Two arguments arc tangent operation.FieldDerivativeStructure.atanh()
Inverse hyperbolic tangent operation.FDSFactory.build
(double... derivatives) Build aFieldDerivativeStructure
from all its derivatives.final FieldDerivativeStructure<T>
Build aFieldDerivativeStructure
from all its derivatives.FieldDerivativeStructure.compose
(double... f) Compute composition of the instance by a univariate function.final FieldDerivativeStructure<T>
Compute composition of the instance by a univariate function.FDSFactory.constant
(double value) Build aFieldDerivativeStructure
representing a constant value.Build aFieldDerivativeStructure
representing a constant value.FieldDerivativeStructure.copySign
(double sign) Returns the instance with the sign of the argument.FieldDerivativeStructure.copySign
(FieldDerivativeStructure<T> sign) Returns the instance with the sign of the argument.Returns the instance with the sign of the argument.FieldDerivativeStructure.cos()
Cosine operation.FieldDerivativeStructure.cosh()
Hyperbolic cosine operation.FieldDerivativeStructure.differentiate
(int varIndex, int differentiationOrder) Differentiate w.r.t.FieldDerivativeStructure.divide
(double a) '÷' operator.FieldDerivativeStructure.divide
(FieldDerivativeStructure<T> a) Compute this ÷ a.'÷' operator.FieldDerivativeStructure.exp()
Exponential.FieldDerivativeStructure.expm1()
Exponential minus 1.FieldTaylorMap.getFunction
(int i) Get a function from the map.FDSFactory.DerivativeField.getOne()
Get the multiplicative identity of the field.FDSFactory.DerivativeField.getPi()
Get the Archimedes constant π.FieldDerivativeStructure.getPi()
Get the Archimedes constant π.FDSFactory.DerivativeField.getZero()
Get the additive identity of the field.FieldDerivativeStructure.hypot
(FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.hypot
(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.FieldDerivativeStructure.integrate
(int varIndex, int integrationOrder) Integrate w.r.t.FieldDerivativeStructure.linearCombination
(double[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination
(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination
(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination
(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.linearCombination
(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination
(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination
(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination
(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.linearCombination
(T[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination
(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination
(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination
(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.log()
Natural logarithm.FieldDerivativeStructure.log10()
Base 10 logarithm.FieldDerivativeStructure.log1p()
Shifted natural logarithm.FieldDerivativeStructure.multiply
(double a) '×' operator.FieldDerivativeStructure.multiply
(FieldDerivativeStructure<T> a) Compute this × a.'×' operator.FieldDerivativeStructure.negate()
Returns the additive inverse ofthis
element.FieldDerivativeStructure.newInstance
(double value) Create an instance corresponding to a constant real value.FieldDerivativeStructure.newInstance
(T value) Create an instance corresponding to a constant Field value.FieldDerivativeStructure.pow
(double p) Power operation.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.pow
(double a, FieldDerivativeStructure<T> x) Compute ax where a is a double and x aFieldDerivativeStructure
FieldDerivativeStructure.pow
(int n) Integer power operation.FieldDerivativeStructure.pow
(FieldDerivativeStructure<T> e) Power operation.FieldDerivativeStructure.rebase
(FieldDerivativeStructure<T>... p) Rebase instance with respect to low level parameter functions.FieldDerivativeStructure.reciprocal()
Returns the multiplicative inverse ofthis
element.FieldDerivativeStructure.remainder
(double a) IEEE remainder operator.FieldDerivativeStructure.remainder
(FieldDerivativeStructure<T> a) IEEE remainder operator.IEEE remainder operator.FieldDerivativeStructure.rootN
(int n) Nth root.FieldDerivativeStructure.scalb
(int n) Multiply the instance by a power of 2.FieldDerivativeStructure.sin()
Sine operation.FieldDerivativeStructure.sinh()
Hyperbolic sine operation.FieldDerivativeStructure.sqrt()
Square root.FieldDerivativeStructure.square()
Compute this × this.FieldDerivativeStructure.subtract
(double a) '-' operator.FieldDerivativeStructure.subtract
(FieldDerivativeStructure<T> a) Compute this - a.FieldDerivativeStructure.tan()
Tangent operation.FieldDerivativeStructure.tanh()
Hyperbolic tangent operation.FieldDerivativeStructure.toDegrees()
Convert radians to degrees, with error of less than 0.5 ULPFieldGradient.toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure
.abstract FieldDerivativeStructure<S>
FieldUnivariateDerivative.toDerivativeStructure()
Convert the instance to aDerivativeStructure
.FieldUnivariateDerivative1.toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure
.FieldUnivariateDerivative2.toDerivativeStructure()
Convert the instance to aFieldDerivativeStructure
.FieldDerivativeStructure.toRadians()
Convert degrees to radians, with error of less than 0.5 ULPFDSFactory.variable
(int index, double value) Build aFieldDerivativeStructure
representing a variable.Build aFieldDerivativeStructure
representing a variable.Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.Modifier and TypeMethodDescriptionFieldDerivativeStructure.getField()
Get theField
to which the instance belongs.FDSFactory.DerivativeField.getRuntimeClass()
Returns the runtime class of the FieldElement.FieldDerivativeStructure.sinCos()
Combined Sine and Cosine operation.FieldDerivativeStructure.sinhCosh()
Combined hyperbolic sine and cosine operation.Modifier and TypeMethodDescriptionFieldDerivativeStructure.add
(FieldDerivativeStructure<T> a) Compute this + a.FieldDerivativeStructure.atan2
(FieldDerivativeStructure<T> x) Two arguments arc tangent operation.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.atan2
(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) Two arguments arc tangent operation.FieldDerivativeStructure.copySign
(FieldDerivativeStructure<T> sign) Returns the instance with the sign of the argument.FieldDerivativeStructure.divide
(FieldDerivativeStructure<T> a) Compute this ÷ a.FieldDerivativeStructure.hypot
(FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesthis
andy
- sqrt(this2 +y2) avoiding intermediate overflow or underflow.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.hypot
(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesx
andy
- sqrt(x2 +y2) avoiding intermediate overflow or underflow.FieldDerivativeStructure.linearCombination
(double[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination
(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination
(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination
(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.linearCombination
(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination
(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination
(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination
(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.linearCombination
(T[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination
(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination
(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination
(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.multiply
(FieldDerivativeStructure<T> a) Compute this × a.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T>FieldDerivativeStructure.pow
(double a, FieldDerivativeStructure<T> x) Compute ax where a is a double and x aFieldDerivativeStructure
FieldDerivativeStructure.pow
(FieldDerivativeStructure<T> e) Power operation.FieldDerivativeStructure.rebase
(FieldDerivativeStructure<T>... p) Rebase instance with respect to low level parameter functions.FieldDerivativeStructure.remainder
(FieldDerivativeStructure<T> a) IEEE remainder operator.FieldDerivativeStructure.subtract
(FieldDerivativeStructure<T> a) Compute this - a.ModifierConstructorDescriptionBuild an instance from aDerivativeStructure
.FieldTaylorMap
(T[] point, FieldDerivativeStructure<T>[] functions) Simple constructor.Build an instance from aDerivativeStructure
.Build an instance from aDerivativeStructure
.