Package org.hipparchus.stat.correlation
Class KendallsCorrelation
- java.lang.Object
-
- org.hipparchus.stat.correlation.KendallsCorrelation
-
public class KendallsCorrelation extends Object
Implementation of Kendall's Tau-b rank correlation.A pair of observations (x1, y1) and (x2, y2) are considered concordant if x1 < x2 and y1 < y2 or x2 < x1 and y2 < y1. The pair is discordant if x1 < x2 and y2 < y1 or x2 < x1 and y1 < y2. If either x1 = x2 or y1 = y2, the pair is neither concordant nor discordant.
Kendall's Tau-b is defined as: \[ \tau_b = \frac{n_c - n_d}{\sqrt{(n_0 - n_1) (n_0 - n_2)}} \]
where:
- n0 = n * (n - 1) / 2
- nc = Number of concordant pairs
- nd = Number of discordant pairs
- n1 = sum of ti * (ti - 1) / 2 for all i
- n2 = sum of uj * (uj - 1) / 2 for all j
- ti = Number of tied values in the ith group of ties in x
- uj = Number of tied values in the jth group of ties in y
This implementation uses the O(n log n) algorithm described in William R. Knight's 1966 paper "A Computer Method for Calculating Kendall's Tau with Ungrouped Data" in the Journal of the American Statistical Association.
-
-
Constructor Summary
Constructors Constructor Description KendallsCorrelation()
Create a KendallsCorrelation instance without data.KendallsCorrelation(double[][] data)
Create a KendallsCorrelation from a rectangular array whose columns represent values of variables to be correlated.KendallsCorrelation(RealMatrix matrix)
Create a KendallsCorrelation from a RealMatrix whose columns represent variables to be correlated.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description RealMatrix
computeCorrelationMatrix(double[][] matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of the input rectangular array.RealMatrix
computeCorrelationMatrix(RealMatrix matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of the input matrix.double
correlation(double[] xArray, double[] yArray)
Computes the Kendall's Tau rank correlation coefficient between the two arrays.RealMatrix
getCorrelationMatrix()
Returns the correlation matrix.
-
-
-
Constructor Detail
-
KendallsCorrelation
public KendallsCorrelation()
Create a KendallsCorrelation instance without data.
-
KendallsCorrelation
public KendallsCorrelation(double[][] data)
Create a KendallsCorrelation from a rectangular array whose columns represent values of variables to be correlated.- Parameters:
data
- rectangular array with columns representing variables- Throws:
IllegalArgumentException
- if the input data array is not rectangular with at least two rows and two columns.
-
KendallsCorrelation
public KendallsCorrelation(RealMatrix matrix)
Create a KendallsCorrelation from a RealMatrix whose columns represent variables to be correlated.- Parameters:
matrix
- matrix with columns representing variables to correlate
-
-
Method Detail
-
getCorrelationMatrix
public RealMatrix getCorrelationMatrix()
Returns the correlation matrix.- Returns:
- correlation matrix
-
computeCorrelationMatrix
public RealMatrix computeCorrelationMatrix(RealMatrix matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of the input matrix.- Parameters:
matrix
- matrix with columns representing variables to correlate- Returns:
- correlation matrix
-
computeCorrelationMatrix
public RealMatrix computeCorrelationMatrix(double[][] matrix)
Computes the Kendall's Tau rank correlation matrix for the columns of the input rectangular array. The columns of the array represent values of variables to be correlated.- Parameters:
matrix
- matrix with columns representing variables to correlate- Returns:
- correlation matrix
-
correlation
public double correlation(double[] xArray, double[] yArray) throws MathIllegalArgumentException
Computes the Kendall's Tau rank correlation coefficient between the two arrays.- Parameters:
xArray
- first data arrayyArray
- second data array- Returns:
- Returns Kendall's Tau rank correlation coefficient for the two arrays
- Throws:
MathIllegalArgumentException
- if the arrays lengths do not match
-
-