Uses of Interface
org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation
-
Packages that use LeastSquaresProblem.Evaluation Package Description org.hipparchus.optim.nonlinear.vector.leastsquares This package provides algorithms that minimize the residuals between observations and model values. -
-
Uses of LeastSquaresProblem.Evaluation in org.hipparchus.optim.nonlinear.vector.leastsquares
Subinterfaces of LeastSquaresProblem.Evaluation in org.hipparchus.optim.nonlinear.vector.leastsquares Modifier and Type Interface Description static interface
LeastSquaresOptimizer.Optimum
The optimum found by the optimizer.Classes in org.hipparchus.optim.nonlinear.vector.leastsquares that implement LeastSquaresProblem.Evaluation Modifier and Type Class Description class
AbstractEvaluation
An implementation ofLeastSquaresProblem.Evaluation
that is designed for extension.Methods in org.hipparchus.optim.nonlinear.vector.leastsquares that return LeastSquaresProblem.Evaluation Modifier and Type Method Description LeastSquaresProblem.Evaluation
LeastSquaresAdapter. evaluate(RealVector point)
Evaluate the model at the specified point.LeastSquaresProblem.Evaluation
LeastSquaresProblem. evaluate(RealVector point)
Evaluate the model at the specified point.LeastSquaresProblem.Evaluation
SequentialGaussNewtonOptimizer. getOldEvaluation()
Get the previous evaluation used by the optimizer.Methods in org.hipparchus.optim.nonlinear.vector.leastsquares that return types with arguments of type LeastSquaresProblem.Evaluation Modifier and Type Method Description static ConvergenceChecker<LeastSquaresProblem.Evaluation>
LeastSquaresFactory. evaluationChecker(ConvergenceChecker<PointVectorValuePair> checker)
View a convergence checker specified for aPointVectorValuePair
as one specified for anLeastSquaresProblem.Evaluation
.ConvergenceChecker<LeastSquaresProblem.Evaluation>
LeastSquaresAdapter. getConvergenceChecker()
Gets the convergence checker.Methods in org.hipparchus.optim.nonlinear.vector.leastsquares with parameters of type LeastSquaresProblem.Evaluation Modifier and Type Method Description boolean
EvaluationRmsChecker. converged(int iteration, LeastSquaresProblem.Evaluation previous, LeastSquaresProblem.Evaluation current)
Check if the optimization algorithm has converged.static LeastSquaresOptimizer.Optimum
LeastSquaresOptimizer.Optimum. of(LeastSquaresProblem.Evaluation value, int evaluations, int iterations)
Create a new optimum from an evaluation and the values of the counters.SequentialGaussNewtonOptimizer
SequentialGaussNewtonOptimizer. withEvaluation(LeastSquaresProblem.Evaluation previousEvaluation)
Configure the previous evaluation used by the optimizer.Method parameters in org.hipparchus.optim.nonlinear.vector.leastsquares with type arguments of type LeastSquaresProblem.Evaluation Modifier and Type Method Description LeastSquaresBuilder
LeastSquaresBuilder. checker(ConvergenceChecker<LeastSquaresProblem.Evaluation> newChecker)
Configure the convergence checker.static LeastSquaresProblem
LeastSquaresFactory. create(MultivariateVectorFunction model, MultivariateMatrixFunction jacobian, double[] observed, double[] start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations)
Create aLeastSquaresProblem
from the given elements.static LeastSquaresProblem
LeastSquaresFactory. create(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations)
Create aLeastSquaresProblem
from the given elements.static LeastSquaresProblem
LeastSquaresFactory. create(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations, boolean lazyEvaluation, ParameterValidator paramValidator)
Create aLeastSquaresProblem
from the given elements.static LeastSquaresProblem
LeastSquaresFactory. create(MultivariateJacobianFunction model, RealVector observed, RealVector start, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations)
Create aLeastSquaresProblem
from the given elements.Constructors in org.hipparchus.optim.nonlinear.vector.leastsquares with parameters of type LeastSquaresProblem.Evaluation Constructor Description SequentialGaussNewtonOptimizer(MatrixDecomposer decomposer, boolean formNormalEquations, LeastSquaresProblem.Evaluation evaluation)
Create a sequential Gauss Newton optimizer that uses the given matrix decomposition algorithm to solve the normal equations.
-