Class EigenDecompositionSymmetric


  • public class EigenDecompositionSymmetric
    extends Object
    Calculates the eigen decomposition of a symmetric real matrix.

    The eigen decomposition of matrix A is a set of two matrices: \(V\) and \(D\) such that \(A V = V D\) where $\(A\), \(V\) and \(D\) are all \(m \times m\) matrices.

    This class is similar in spirit to the EigenvalueDecomposition class from the JAMA library, with the following changes:

    As \(A\) is symmetric, then \(A = V D V^T\) where the eigenvalue matrix \(D\) is diagonal and the eigenvector matrix \(V\) is orthogonal, i.e. A = V.multiply(D.multiply(V.transpose())) and V.multiply(V.transpose()) equals the identity matrix.

    The columns of \(V\) represent the eigenvectors in the sense that \(A V = V D\), i.e. A.multiply(V) equals V.multiply(D). The matrix \(V\) may be badly conditioned, or even singular, so the validity of the equation \(A = V D V^{-1}\) depends upon the condition of \(V\).

    This implementation is based on the paper by A. Drubrulle, R.S. Martin and J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971) Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag, New-York.
    See Also:
    MathWorld, Wikipedia
    • Field Detail

      • DEFAULT_EPSILON

        public static final double DEFAULT_EPSILON
        Default epsilon value to use for internal epsilon
        See Also:
        Constant Field Values
    • Constructor Detail

      • EigenDecompositionSymmetric

        public EigenDecompositionSymmetric​(RealMatrix matrix)
        Calculates the eigen decomposition of the given symmetric real matrix.

        This constructor uses the default epsilon and decreasing order for eigenvalues.

        Parameters:
        matrix - Matrix to decompose.
        Throws:
        MathIllegalStateException - if the algorithm fails to converge.
        MathRuntimeException - if the decomposition of a general matrix results in a matrix with zero norm
      • EigenDecompositionSymmetric

        public EigenDecompositionSymmetric​(RealMatrix matrix,
                                           double epsilon,
                                           boolean decreasing)
                                    throws MathRuntimeException
        Calculates the eigen decomposition of the given real matrix.

        Supports decomposition of a general matrix since 3.1.

        Parameters:
        matrix - Matrix to decompose.
        epsilon - Epsilon used for internal tests (e.g. is singular, eigenvalue ratio, etc.)
        decreasing - if true, eigenvalues will be sorted in decreasing order
        Throws:
        MathIllegalStateException - if the algorithm fails to converge.
        MathRuntimeException - if the decomposition of a general matrix results in a matrix with zero norm
        Since:
        3.0
      • EigenDecompositionSymmetric

        public EigenDecompositionSymmetric​(double[] main,
                                           double[] secondary)
        Calculates the eigen decomposition of the symmetric tridiagonal matrix.

        The Householder matrix is assumed to be the identity matrix.

        This constructor uses the default epsilon and decreasing order for eigenvalues.

        Parameters:
        main - Main diagonal of the symmetric tridiagonal form.
        secondary - Secondary of the tridiagonal form.
        Throws:
        MathIllegalStateException - if the algorithm fails to converge.
      • EigenDecompositionSymmetric

        public EigenDecompositionSymmetric​(double[] main,
                                           double[] secondary,
                                           double epsilon,
                                           boolean decreasing)
        Calculates the eigen decomposition of the symmetric tridiagonal matrix. The Householder matrix is assumed to be the identity matrix.
        Parameters:
        main - Main diagonal of the symmetric tridiagonal form.
        secondary - Secondary of the tridiagonal form.
        epsilon - Epsilon used for internal tests (e.g. is singular, eigenvalue ratio, etc.)
        decreasing - if true, eigenvalues will be sorted in decreasing order
        Throws:
        MathIllegalStateException - if the algorithm fails to converge.
        Since:
        3.0
    • Method Detail

      • getV

        public RealMatrix getV()
        Gets the matrix V of the decomposition. V is an orthogonal matrix, i.e. its transpose is also its inverse. The columns of V are the eigenvectors of the original matrix. No assumption is made about the orientation of the system axes formed by the columns of V (e.g. in a 3-dimension space, V can form a left- or right-handed system).
        Returns:
        the V matrix.
      • getD

        public DiagonalMatrix getD()
        Gets the diagonal matrix D of the decomposition. D is a diagonal matrix.
        Returns:
        the D matrix.
        See Also:
        getEigenvalues()
      • getEpsilon

        public double getEpsilon()
        Get's the value for epsilon which is used for internal tests (e.g. is singular, eigenvalue ratio, etc.)
        Returns:
        the epsilon value.
      • getVT

        public RealMatrix getVT()
        Gets the transpose of the matrix V of the decomposition. V is an orthogonal matrix, i.e. its transpose is also its inverse. The columns of V are the eigenvectors of the original matrix. No assumption is made about the orientation of the system axes formed by the columns of V (e.g. in a 3-dimension space, V can form a left- or right-handed system).
        Returns:
        the transpose of the V matrix.
      • getEigenvalues

        public double[] getEigenvalues()
        Gets a copy of the eigenvalues of the original matrix.
        Returns:
        a copy of the eigenvalues of the original matrix.
        See Also:
        getD(), getEigenvalue(int)
      • getEigenvalue

        public double getEigenvalue​(int i)
        Returns the ith eigenvalue of the original matrix.
        Parameters:
        i - index of the eigenvalue (counting from 0)
        Returns:
        real part of the ith eigenvalue of the original matrix.
        See Also:
        getD(), getEigenvalues()
      • getEigenvector

        public RealVector getEigenvector​(int i)
        Gets a copy of the ith eigenvector of the original matrix.

        Note that if the the ith is complex this method will throw an exception.

        Parameters:
        i - Index of the eigenvector (counting from 0).
        Returns:
        a copy of the ith eigenvector of the original matrix.
        See Also:
        getD()
      • getDeterminant

        public double getDeterminant()
        Computes the determinant of the matrix.
        Returns:
        the determinant of the matrix.
      • getSquareRoot

        public RealMatrix getSquareRoot()
        Computes the square-root of the matrix. This implementation assumes that the matrix is positive definite.
        Returns:
        the square-root of the matrix.
        Throws:
        MathRuntimeException - if the matrix is not symmetric or not positive definite.
      • getSolver

        public DecompositionSolver getSolver()
        Gets a solver for finding the \(A \times X = B\) solution in exact linear sense.
        Returns:
        a solver