Class DividedDifferenceInterpolator
- java.lang.Object
-
- org.hipparchus.analysis.interpolation.DividedDifferenceInterpolator
-
- All Implemented Interfaces:
Serializable
,UnivariateInterpolator
public class DividedDifferenceInterpolator extends Object implements UnivariateInterpolator, Serializable
Implements the Divided Difference Algorithm for interpolation of real univariate functions. For reference, see Introduction to Numerical Analysis, ISBN 038795452X, chapter 2.The actual code of Neville's evaluation is in PolynomialFunctionLagrangeForm, this class provides an easy-to-use interface to it.
- See Also:
- Serialized Form
-
-
Constructor Summary
Constructors Constructor Description DividedDifferenceInterpolator()
Empty constructor.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description protected static double[]
computeDividedDifference(double[] x, double[] y)
Return a copy of the divided difference array.PolynomialFunctionNewtonForm
interpolate(double[] x, double[] y)
Compute an interpolating function for the dataset.
-
-
-
Method Detail
-
interpolate
public PolynomialFunctionNewtonForm interpolate(double[] x, double[] y) throws MathIllegalArgumentException
Compute an interpolating function for the dataset.- Specified by:
interpolate
in interfaceUnivariateInterpolator
- Parameters:
x
- Interpolating points array.y
- Interpolating values array.- Returns:
- a function which interpolates the dataset.
- Throws:
MathIllegalArgumentException
- if the array lengths are different.MathIllegalArgumentException
- if the number of points is less than 2.MathIllegalArgumentException
- ifx
is not sorted in strictly increasing order.
-
computeDividedDifference
protected static double[] computeDividedDifference(double[] x, double[] y) throws MathIllegalArgumentException
Return a copy of the divided difference array.The divided difference array is defined recursively by
f[x0] = f(x0) f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
The computational complexity is \(O(n^2)\) where \(n\) is the common length of
x
andy
.- Parameters:
x
- Interpolating points array.y
- Interpolating values array.- Returns:
- a fresh copy of the divided difference array.
- Throws:
MathIllegalArgumentException
- if the array lengths are different.MathIllegalArgumentException
- if the number of points is less than 2.MathIllegalArgumentException
- ifx
is not sorted in strictly increasing order.
-
-