Class GaussIntegratorFactory


  • public class GaussIntegratorFactory
    extends Object
    Class that provides different ways to compute the nodes and weights to be used by the Gaussian integration rule.
    • Field Detail

      • DEFAULT_DECIMAL_DIGITS

        public static final int DEFAULT_DECIMAL_DIGITS
        Number of digits for Legendre high precision.
        See Also:
        Constant Field Values
    • Constructor Detail

      • GaussIntegratorFactory

        public GaussIntegratorFactory()
        Simple constructor.
      • GaussIntegratorFactory

        public GaussIntegratorFactory​(int decimalDigits)
        Simple constructor.
        Parameters:
        decimalDigits - minimum number of decimal digits for legendreHighPrecision(int)
    • Method Detail

      • laguerre

        public GaussIntegrator laguerre​(int numberOfPoints)
        Creates a Gauss-Laguerre integrator of the given order. The call to the integrate method will perform an integration on the interval \([0, +\infty)\): the computed value is the improper integral of \(e^{-x} f(x)\) where \(f(x)\) is the function passed to the integrate method.
        Parameters:
        numberOfPoints - Order of the integration rule.
        Returns:
        a Gauss-Legendre integrator.
      • legendre

        public GaussIntegrator legendre​(int numberOfPoints)
        Creates a Gauss-Legendre integrator of the given order. The call to the integrate method will perform an integration on the natural interval [-1 , 1].
        Parameters:
        numberOfPoints - Order of the integration rule.
        Returns:
        a Gauss-Legendre integrator.
      • legendre

        public GaussIntegrator legendre​(int numberOfPoints,
                                        double lowerBound,
                                        double upperBound)
                                 throws MathIllegalArgumentException
        Creates a Gauss-Legendre integrator of the given order. The call to the integrate method will perform an integration on the given interval.
        Parameters:
        numberOfPoints - Order of the integration rule.
        lowerBound - Lower bound of the integration interval.
        upperBound - Upper bound of the integration interval.
        Returns:
        a Gauss-Legendre integrator.
        Throws:
        MathIllegalArgumentException - if number of points is not positive
      • legendreHighPrecision

        public GaussIntegrator legendreHighPrecision​(int numberOfPoints)
                                              throws MathIllegalArgumentException
        Creates a Gauss-Legendre integrator of the given order. The call to the integrate method will perform an integration on the natural interval [-1 , 1].
        Parameters:
        numberOfPoints - Order of the integration rule.
        Returns:
        a Gauss-Legendre integrator.
        Throws:
        MathIllegalArgumentException - if number of points is not positive
      • legendreHighPrecision

        public GaussIntegrator legendreHighPrecision​(int numberOfPoints,
                                                     double lowerBound,
                                                     double upperBound)
                                              throws MathIllegalArgumentException
        Creates an integrator of the given order, and whose call to the integrate method will perform an integration on the given interval.
        Parameters:
        numberOfPoints - Order of the integration rule.
        lowerBound - Lower bound of the integration interval.
        upperBound - Upper bound of the integration interval.
        Returns:
        a Gauss-Legendre integrator.
        Throws:
        MathIllegalArgumentException - if number of points is not positive
      • hermite

        public SymmetricGaussIntegrator hermite​(int numberOfPoints)
        Creates a Gauss-Hermite integrator of the given order. The call to the integrate method will perform a weighted integration on the interval \([-\infty, +\infty]\): the computed value is the improper integral of \(e^{-x^2}f(x)\) where \(f(x)\) is the function passed to the integrate method.
        Parameters:
        numberOfPoints - Order of the integration rule.
        Returns:
        a Gauss-Hermite integrator.