Class ContinuedFraction


  • public abstract class ContinuedFraction
    extends Object
    Provides a generic means to evaluate continued fractions. Subclasses simply provided the a and b coefficients to evaluate the continued fraction.

    References:

    • Constructor Summary

      Constructors 
      Modifier Constructor Description
      protected ContinuedFraction()
      Default constructor.
    • Method Summary

      All Methods Instance Methods Abstract Methods Concrete Methods 
      Modifier and Type Method Description
      double evaluate​(double x)
      Evaluates the continued fraction at the value x.
      double evaluate​(double x, double epsilon)
      Evaluates the continued fraction at the value x.
      double evaluate​(double x, double epsilon, int maxIterations)
      Evaluates the continued fraction at the value x.
      double evaluate​(double x, int maxIterations)
      Evaluates the continued fraction at the value x.
      protected abstract double getA​(int n, double x)
      Access the n-th a coefficient of the continued fraction.
      protected abstract double getB​(int n, double x)
      Access the n-th b coefficient of the continued fraction.
    • Constructor Detail

      • ContinuedFraction

        protected ContinuedFraction()
        Default constructor.
    • Method Detail

      • getA

        protected abstract double getA​(int n,
                                       double x)
        Access the n-th a coefficient of the continued fraction. Since a can be a function of the evaluation point, x, that is passed in as well.
        Parameters:
        n - the coefficient index to retrieve.
        x - the evaluation point.
        Returns:
        the n-th a coefficient.
      • getB

        protected abstract double getB​(int n,
                                       double x)
        Access the n-th b coefficient of the continued fraction. Since b can be a function of the evaluation point, x, that is passed in as well.
        Parameters:
        n - the coefficient index to retrieve.
        x - the evaluation point.
        Returns:
        the n-th b coefficient.
      • evaluate

        public double evaluate​(double x)
                        throws MathIllegalStateException
        Evaluates the continued fraction at the value x.
        Parameters:
        x - the evaluation point.
        Returns:
        the value of the continued fraction evaluated at x.
        Throws:
        MathIllegalStateException - if the algorithm fails to converge.
      • evaluate

        public double evaluate​(double x,
                               double epsilon)
                        throws MathIllegalStateException
        Evaluates the continued fraction at the value x.
        Parameters:
        x - the evaluation point.
        epsilon - maximum error allowed.
        Returns:
        the value of the continued fraction evaluated at x.
        Throws:
        MathIllegalStateException - if the algorithm fails to converge.
      • evaluate

        public double evaluate​(double x,
                               int maxIterations)
                        throws MathIllegalStateException
        Evaluates the continued fraction at the value x.
        Parameters:
        x - the evaluation point.
        maxIterations - maximum number of convergents
        Returns:
        the value of the continued fraction evaluated at x.
        Throws:
        MathIllegalStateException - if the algorithm fails to converge.
        MathIllegalStateException - if maximal number of iterations is reached
      • evaluate

        public double evaluate​(double x,
                               double epsilon,
                               int maxIterations)
                        throws MathIllegalStateException
        Evaluates the continued fraction at the value x.

        The implementation of this method is based on the modified Lentz algorithm as described on page 18 ff. in:

        Note: the implementation uses the terms ai and bi as defined in Continued Fraction @ MathWorld.

        Parameters:
        x - the evaluation point.
        epsilon - maximum error allowed.
        maxIterations - maximum number of convergents
        Returns:
        the value of the continued fraction evaluated at x.
        Throws:
        MathIllegalStateException - if the algorithm fails to converge.
        MathIllegalStateException - if maximal number of iterations is reached