Uses of Class
org.hipparchus.complex.Complex
-
Packages that use Complex Package Description org.hipparchus.analysis.solvers Root finding algorithms, for univariate real functions.org.hipparchus.complex Complex number type and implementations of complex transcendental functions.org.hipparchus.linear Linear algebra support.org.hipparchus.ode This package provides classes to solve Ordinary Differential Equations problems.org.hipparchus.transform Implementations of transform methods, including Fast Fourier transforms. -
-
Uses of Complex in org.hipparchus.analysis.solvers
Methods in org.hipparchus.analysis.solvers that return Complex Modifier and Type Method Description Complex[]
LaguerreSolver. solveAllComplex(double[] coefficients, double initial)
Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.Complex
LaguerreSolver. solveComplex(double[] coefficients, double initial)
Find a complex root for the polynomial with the given coefficients, starting from the given initial value. -
Uses of Complex in org.hipparchus.complex
Fields in org.hipparchus.complex declared as Complex Modifier and Type Field Description static Complex
Complex. I
The square root of -1.static Complex
Complex. INF
A complex number representing "+INF + INFi"static Complex
Complex. NaN
A complex number representing "NaN + NaNi"static Complex
Complex. ONE
A complex number representing "1.0 + 0.0i"static Complex
Complex. ZERO
A complex number representing "0.0 + 0.0i"Methods in org.hipparchus.complex that return Complex Modifier and Type Method Description Complex
Complex. acos()
Compute the inverse cosine of this complex number.Complex
Complex. add(double addend)
Returns aComplex
whose value is(this + addend)
, withaddend
interpreted as a real number.Complex
Complex. add(Complex addend)
Returns aComplex
whose value is(this + addend)
.Complex
Complex. asin()
Compute the inverse sine of this complex number.Complex
Complex. atan()
Compute the inverse tangent of this complex number.Complex
Complex. conjugate()
Returns the conjugate of this complex number.static Complex[]
ComplexUtils. convertToComplex(double[] real)
Convert an array of primitive doubles to an array ofComplex
objects.Complex
Complex. cos()
Compute the cosine of this complex number.Complex
Complex. cosh()
Compute the hyperbolic cosine of this complex number.protected Complex
Complex. createComplex(double realPart, double imaginaryPart)
Create a complex number given the real and imaginary parts.Complex
Complex. divide(double divisor)
Returns aComplex
whose value is(this / divisor)
, withdivisor
interpreted as a real number.Complex
Complex. divide(Complex divisor)
Returns aComplex
whose value is(this / divisor)
.Complex
Complex. exp()
Compute the exponential function of this complex number.Complex
ComplexField. getOne()
Get the multiplicative identity of the field.Complex
ComplexField. getZero()
Get the additive identity of the field.Complex
Complex. log()
Compute the natural logarithm of this complex number.Complex
Complex. multiply(double factor)
Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a real number.Complex
Complex. multiply(int factor)
Returns aComplex
whose value isthis * factor
, withfactor
interpreted as a integer number.Complex
Complex. multiply(Complex factor)
Returns aComplex
whose value isthis * factor
.Complex
Complex. negate()
Returns aComplex
whose value is(-this)
.Complex
ComplexFormat. parse(String source)
Parses a string to produce aComplex
object.Complex
ComplexFormat. parse(String source, ParsePosition pos)
Parses a string to produce aComplex
object.static Complex
ComplexUtils. polar2Complex(double r, double theta)
Creates a complex number from the given polar representation.Complex
Complex. pow(double x)
Returns of value of this complex number raised to the power ofx
.Complex
Complex. pow(Complex x)
Returns of value of this complex number raised to the power ofx
.Complex
Complex. reciprocal()
Returns the multiplicative inverse ofthis
element.Complex
Complex. sin()
Compute the sine of this complex number.Complex
Complex. sinh()
Compute the hyperbolic sine of this complex number.Complex
Complex. sqrt()
Compute the square root of this complex number.Complex
Complex. sqrt1z()
Compute the square root of1 - this2
for this complex number.Complex
Complex. subtract(double subtrahend)
Returns aComplex
whose value is(this - subtrahend)
.Complex
Complex. subtract(Complex subtrahend)
Returns aComplex
whose value is(this - subtrahend)
.Complex
Complex. tan()
Compute the tangent of this complex number.Complex
Complex. tanh()
Compute the hyperbolic tangent of this complex number.static Complex
Complex. valueOf(double realPart)
Create a complex number given only the real part.static Complex
Complex. valueOf(double realPart, double imaginaryPart)
Create a complex number given the real and imaginary parts.Methods in org.hipparchus.complex that return types with arguments of type Complex Modifier and Type Method Description Class<? extends FieldElement<Complex>>
ComplexField. getRuntimeClass()
Returns the runtime class of the FieldElement.List<Complex>
Complex. nthRoot(int n)
Computes the n-th roots of this complex number.Methods in org.hipparchus.complex with parameters of type Complex Modifier and Type Method Description Complex
Complex. add(Complex addend)
Returns aComplex
whose value is(this + addend)
.int
ComplexComparator. compare(Complex o1, Complex o2)
Compare two complex numbers, using real ordering as the primary sort order and imaginary ordering as the secondary sort order.Complex
Complex. divide(Complex divisor)
Returns aComplex
whose value is(this / divisor)
.static boolean
Complex. equals(Complex x, Complex y)
Returnstrue
iff the values are equal as defined byequals(x, y, 1)
.static boolean
Complex. equals(Complex x, Complex y, double eps)
Returnstrue
if, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the difference between them is within the range of allowed error (inclusive).static boolean
Complex. equals(Complex x, Complex y, int maxUlps)
Test for the floating-point equality between Complex objects.static boolean
Complex. equalsWithRelativeTolerance(Complex x, Complex y, double eps)
Returnstrue
if, both for the real part and for the imaginary part, there is no double value strictly between the arguments or the relative difference between them is smaller or equal to the given tolerance.String
ComplexFormat. format(Complex c)
This method callsComplexFormat.format(Object,StringBuffer,FieldPosition)
.StringBuffer
ComplexFormat. format(Complex complex, StringBuffer toAppendTo, FieldPosition pos)
Formats aComplex
object to produce a string.Complex
Complex. multiply(Complex factor)
Returns aComplex
whose value isthis * factor
.Complex
Complex. pow(Complex x)
Returns of value of this complex number raised to the power ofx
.Complex
Complex. subtract(Complex subtrahend)
Returns aComplex
whose value is(this - subtrahend)
. -
Uses of Complex in org.hipparchus.linear
Methods in org.hipparchus.linear that return Complex Modifier and Type Method Description Complex[]
ComplexEigenDecomposition. getEigenvalues()
Getter of the eigen values.Methods in org.hipparchus.linear that return types with arguments of type Complex Modifier and Type Method Description FieldMatrix<Complex>
ComplexEigenDecomposition. getD()
Getter D.FieldVector<Complex>
ComplexEigenDecomposition. getEigenvector(int i)
Getter of the eigen vectors.FieldMatrix<Complex>
ComplexEigenDecomposition. getV()
Getter V.FieldMatrix<Complex>
ComplexEigenDecomposition. getVT()
Getter VT.FieldMatrix<Complex>
OrderedComplexEigenDecomposition. getVT()
Getter VT.Method parameters in org.hipparchus.linear with type arguments of type Complex Modifier and Type Method Description protected void
ComplexEigenDecomposition. findEigenVectors(FieldMatrix<Complex> matrix)
Compute the eigen vectors using the inverse power method. -
Uses of Complex in org.hipparchus.ode
Methods in org.hipparchus.ode that return Complex Modifier and Type Method Description Complex[]
ComplexOrdinaryDifferentialEquation. computeDerivatives(double t, Complex[] y)
Get the current time derivative of the state vector.Complex[]
ComplexSecondaryODE. computeDerivatives(double t, Complex[] primary, Complex[] primaryDot, Complex[] secondary)
Compute the derivatives related to the secondary state parameters.protected Complex[][]
ComplexODEState. copy(Complex[][] original)
Copy a two-dimensions array.Complex[]
ComplexODEStateAndDerivative. getCompleteDerivative()
Get complete derivative at time.Complex[]
ComplexODEState. getCompleteState()
Get complete state at time.Complex[]
ComplexODEStateAndDerivative. getPrimaryDerivative()
Get derivative of the primary state at time.Complex[]
ComplexODEState. getPrimaryState()
Get primary state at time.Complex[]
ComplexODEStateAndDerivative. getSecondaryDerivative(int index)
Get derivative of the secondary state at time.Complex[]
ComplexODEState. getSecondaryState(int index)
Get secondary state at time.Methods in org.hipparchus.ode with parameters of type Complex Modifier and Type Method Description Complex[]
ComplexOrdinaryDifferentialEquation. computeDerivatives(double t, Complex[] y)
Get the current time derivative of the state vector.Complex[]
ComplexSecondaryODE. computeDerivatives(double t, Complex[] primary, Complex[] primaryDot, Complex[] secondary)
Compute the derivatives related to the secondary state parameters.protected Complex[][]
ComplexODEState. copy(Complex[][] original)
Copy a two-dimensions array.default void
ComplexOrdinaryDifferentialEquation. init(double t0, Complex[] y0, double finalTime)
Initialize equations at the start of an ODE integration.default void
ComplexSecondaryODE. init(double t0, Complex[] primary0, Complex[] secondary0, double finalTime)
Initialize equations at the start of an ODE integration.Constructors in org.hipparchus.ode with parameters of type Complex Constructor Description ComplexODEState(double time, Complex[] primaryState)
Simple constructor.ComplexODEState(double time, Complex[] primaryState, Complex[][] secondaryState)
Simple constructor.ComplexODEStateAndDerivative(double time, Complex[] primaryState, Complex[] primaryDerivative)
Simple constructor.ComplexODEStateAndDerivative(double time, Complex[] primaryState, Complex[] primaryDerivative, Complex[][] secondaryState, Complex[][] secondaryDerivative)
Simple constructor. -
Uses of Complex in org.hipparchus.transform
Methods in org.hipparchus.transform that return Complex Modifier and Type Method Description static Complex[]
TransformUtils. createComplexArray(double[][] dataRI)
Builds a new array ofComplex
from the specified two dimensional array of real and imaginary parts.static Complex[]
TransformUtils. scaleArray(Complex[] f, double d)
Multiply every component in the given complex array by the given real number.Complex[]
FastFourierTransformer. transform(double[] f, TransformType type)
Returns the (forward, inverse) transform of the specified real data set.Complex[]
FastFourierTransformer. transform(UnivariateFunction f, double min, double max, int n, TransformType type)
Returns the (forward, inverse) transform of the specified real function, sampled on the specified interval.Complex[]
FastFourierTransformer. transform(Complex[] f, TransformType type)
Returns the (forward, inverse) transform of the specified complex data set.Methods in org.hipparchus.transform with parameters of type Complex Modifier and Type Method Description static double[][]
TransformUtils. createRealImaginaryArray(Complex[] dataC)
Builds a new two dimensional array ofdouble
filled with the real and imaginary parts of the specifiedComplex
numbers.static Complex[]
TransformUtils. scaleArray(Complex[] f, double d)
Multiply every component in the given complex array by the given real number.Complex[]
FastFourierTransformer. transform(Complex[] f, TransformType type)
Returns the (forward, inverse) transform of the specified complex data set.
-