Class PolynomialFunctionLagrangeForm
- java.lang.Object
-
- org.hipparchus.analysis.polynomials.PolynomialFunctionLagrangeForm
-
- All Implemented Interfaces:
UnivariateFunction
public class PolynomialFunctionLagrangeForm extends Object implements UnivariateFunction
Implements the representation of a real polynomial function in Lagrange Form. For reference, see Introduction to Numerical Analysis, ISBN 038795452X, chapter 2.The approximated function should be smooth enough for Lagrange polynomial to work well. Otherwise, consider using splines instead.
-
-
Constructor Summary
Constructors Constructor Description PolynomialFunctionLagrangeForm(double[] x, double[] y)
Construct a Lagrange polynomial with the given abscissas and function values.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description protected void
computeCoefficients()
Calculate the coefficients of Lagrange polynomial from the interpolation data.int
degree()
Returns the degree of the polynomial.static double
evaluate(double[] x, double[] y, double z)
Evaluate the Lagrange polynomial using Neville's Algorithm.double[]
getCoefficients()
Returns a copy of the coefficients array.double[]
getInterpolatingPoints()
Returns a copy of the interpolating points array.double[]
getInterpolatingValues()
Returns a copy of the interpolating values array.double
value(double z)
Calculate the function value at the given point.static boolean
verifyInterpolationArray(double[] x, double[] y, boolean abort)
Check that the interpolation arrays are valid.
-
-
-
Constructor Detail
-
PolynomialFunctionLagrangeForm
public PolynomialFunctionLagrangeForm(double[] x, double[] y) throws MathIllegalArgumentException
Construct a Lagrange polynomial with the given abscissas and function values. The order of interpolating points are not important.The constructor makes copy of the input arrays and assigns them.
- Parameters:
x
- interpolating pointsy
- function values at interpolating points- Throws:
MathIllegalArgumentException
- if the array lengths are different.MathIllegalArgumentException
- if the number of points is less than 2.MathIllegalArgumentException
- if two abscissae have the same value.
-
-
Method Detail
-
value
public double value(double z)
Calculate the function value at the given point.- Specified by:
value
in interfaceUnivariateFunction
- Parameters:
z
- Point at which the function value is to be computed.- Returns:
- the function value.
- Throws:
MathIllegalArgumentException
- ifx
andy
have different lengths.MathIllegalArgumentException
- ifx
is not sorted in strictly increasing order.MathIllegalArgumentException
- if the size ofx
is less than 2.
-
degree
public int degree()
Returns the degree of the polynomial.- Returns:
- the degree of the polynomial
-
getInterpolatingPoints
public double[] getInterpolatingPoints()
Returns a copy of the interpolating points array.Changes made to the returned copy will not affect the polynomial.
- Returns:
- a fresh copy of the interpolating points array
-
getInterpolatingValues
public double[] getInterpolatingValues()
Returns a copy of the interpolating values array.Changes made to the returned copy will not affect the polynomial.
- Returns:
- a fresh copy of the interpolating values array
-
getCoefficients
public double[] getCoefficients()
Returns a copy of the coefficients array.Changes made to the returned copy will not affect the polynomial.
Note that coefficients computation can be ill-conditioned. Use with caution and only when it is necessary.
- Returns:
- a fresh copy of the coefficients array
-
evaluate
public static double evaluate(double[] x, double[] y, double z) throws MathIllegalArgumentException
Evaluate the Lagrange polynomial using Neville's Algorithm. It takes O(n^2) time.- Parameters:
x
- Interpolating points array.y
- Interpolating values array.z
- Point at which the function value is to be computed.- Returns:
- the function value.
- Throws:
MathIllegalArgumentException
- ifx
andy
have different lengths.MathIllegalArgumentException
- ifx
is not sorted in strictly increasing order.MathIllegalArgumentException
- if the size ofx
is less than 2.
-
computeCoefficients
protected void computeCoefficients()
Calculate the coefficients of Lagrange polynomial from the interpolation data. It takes O(n^2) time. Note that this computation can be ill-conditioned: Use with caution and only when it is necessary.
-
verifyInterpolationArray
public static boolean verifyInterpolationArray(double[] x, double[] y, boolean abort) throws MathIllegalArgumentException
Check that the interpolation arrays are valid. The arrays features checked by this method are that both arrays have the same length and this length is at least 2.- Parameters:
x
- Interpolating points array.y
- Interpolating values array.abort
- Whether to throw an exception ifx
is not sorted.- Returns:
false
if thex
is not sorted in increasing order,true
otherwise.- Throws:
MathIllegalArgumentException
- if the array lengths are different.MathIllegalArgumentException
- if the number of points is less than 2.MathIllegalArgumentException
- ifx
is not sorted in strictly increasing order andabort
istrue
.- See Also:
evaluate(double[], double[], double)
,computeCoefficients()
-
-