Class TwiceDifferentiableFunction
java.lang.Object
org.hipparchus.optim.nonlinear.vector.constrained.TwiceDifferentiableFunction
- All Implemented Interfaces:
MultivariateFunction
- Direct Known Subclasses:
QuadraticFunction
A MultivariateFunction that also has a defined gradient and Hessian.
- Since:
- 3.1
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionabstract int
dim()
Returns the dimensionality of the function domain.gradient
(double[] x) Returns the gradient of this function at (x)abstract RealVector
Returns the gradient of this function at (x)hessian
(double[] x) The Hessian of this function at (x)abstract RealMatrix
The Hessian of this function at (x)double
value
(double[] x) Returns the value of this function at (x)abstract double
value
(RealVector x) Returns the value of this function at (x)
-
Constructor Details
-
TwiceDifferentiableFunction
public TwiceDifferentiableFunction()
-
-
Method Details
-
dim
public abstract int dim()Returns the dimensionality of the function domain. If dim() returns (n) then this function expects an n-vector as its input.- Returns:
- the expected dimension of the function's domain
-
value
Returns the value of this function at (x)- Parameters:
x
- a point to evaluate this function at.- Returns:
- the value of this function at (x)
-
gradient
Returns the gradient of this function at (x)- Parameters:
x
- a point to evaluate this gradient at- Returns:
- the gradient of this function at (x)
-
hessian
The Hessian of this function at (x)- Parameters:
x
- a point to evaluate this Hessian at- Returns:
- the Hessian of this function at (x)
-
value
public double value(double[] x) Returns the value of this function at (x)- Specified by:
value
in interfaceMultivariateFunction
- Parameters:
x
- a point to evaluate this function at.- Returns:
- the value of this function at (x)
-
gradient
Returns the gradient of this function at (x)- Parameters:
x
- a point to evaluate this gradient at- Returns:
- the gradient of this function at (x)
-
hessian
The Hessian of this function at (x)- Parameters:
x
- a point to evaluate this Hessian at- Returns:
- the Hessian of this function at (x)
-