Class PolynomialFunctionLagrangeForm

java.lang.Object
org.hipparchus.analysis.polynomials.PolynomialFunctionLagrangeForm
All Implemented Interfaces:
UnivariateFunction

public class PolynomialFunctionLagrangeForm extends Object implements UnivariateFunction
Implements the representation of a real polynomial function in Lagrange Form. For reference, see Introduction to Numerical Analysis, ISBN 038795452X, chapter 2.

The approximated function should be smooth enough for Lagrange polynomial to work well. Otherwise, consider using splines instead.

  • Constructor Details

    • PolynomialFunctionLagrangeForm

      public PolynomialFunctionLagrangeForm(double[] x, double[] y) throws MathIllegalArgumentException
      Construct a Lagrange polynomial with the given abscissas and function values. The order of interpolating points are not important.

      The constructor makes copy of the input arrays and assigns them.

      Parameters:
      x - interpolating points
      y - function values at interpolating points
      Throws:
      MathIllegalArgumentException - if the array lengths are different.
      MathIllegalArgumentException - if the number of points is less than 2.
      MathIllegalArgumentException - if two abscissae have the same value.
  • Method Details

    • value

      public double value(double z)
      Calculate the function value at the given point.
      Specified by:
      value in interface UnivariateFunction
      Parameters:
      z - Point at which the function value is to be computed.
      Returns:
      the function value.
      Throws:
      MathIllegalArgumentException - if x and y have different lengths.
      MathIllegalArgumentException - if x is not sorted in strictly increasing order.
      MathIllegalArgumentException - if the size of x is less than 2.
    • degree

      public int degree()
      Returns the degree of the polynomial.
      Returns:
      the degree of the polynomial
    • getInterpolatingPoints

      public double[] getInterpolatingPoints()
      Returns a copy of the interpolating points array.

      Changes made to the returned copy will not affect the polynomial.

      Returns:
      a fresh copy of the interpolating points array
    • getInterpolatingValues

      public double[] getInterpolatingValues()
      Returns a copy of the interpolating values array.

      Changes made to the returned copy will not affect the polynomial.

      Returns:
      a fresh copy of the interpolating values array
    • getCoefficients

      public double[] getCoefficients()
      Returns a copy of the coefficients array.

      Changes made to the returned copy will not affect the polynomial.

      Note that coefficients computation can be ill-conditioned. Use with caution and only when it is necessary.

      Returns:
      a fresh copy of the coefficients array
    • evaluate

      public static double evaluate(double[] x, double[] y, double z) throws MathIllegalArgumentException
      Evaluate the Lagrange polynomial using Neville's Algorithm. It takes O(n^2) time.
      Parameters:
      x - Interpolating points array.
      y - Interpolating values array.
      z - Point at which the function value is to be computed.
      Returns:
      the function value.
      Throws:
      MathIllegalArgumentException - if x and y have different lengths.
      MathIllegalArgumentException - if x is not sorted in strictly increasing order.
      MathIllegalArgumentException - if the size of x is less than 2.
    • computeCoefficients

      protected void computeCoefficients()
      Calculate the coefficients of Lagrange polynomial from the interpolation data. It takes O(n^2) time. Note that this computation can be ill-conditioned: Use with caution and only when it is necessary.
    • verifyInterpolationArray

      public static boolean verifyInterpolationArray(double[] x, double[] y, boolean abort) throws MathIllegalArgumentException
      Check that the interpolation arrays are valid. The arrays features checked by this method are that both arrays have the same length and this length is at least 2.
      Parameters:
      x - Interpolating points array.
      y - Interpolating values array.
      abort - Whether to throw an exception if x is not sorted.
      Returns:
      false if the x is not sorted in increasing order, true otherwise.
      Throws:
      MathIllegalArgumentException - if the array lengths are different.
      MathIllegalArgumentException - if the number of points is less than 2.
      MathIllegalArgumentException - if x is not sorted in strictly increasing order and abort is true.
      See Also: